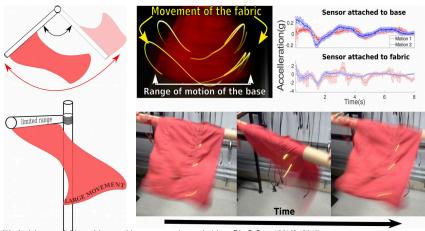

Muscular Activity in Long Distance Running

PERCENTAGE INCREASE IN IARV

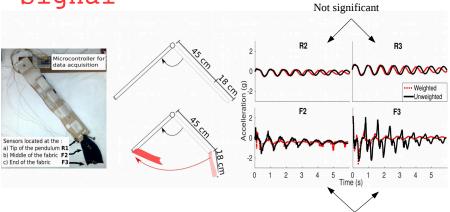
Muscle	Asphalt	Sand	Athletics Track
Vastus Medialis	100.04%	127.71%	54.9%
Rectus Femoris	100.02%	126.75%	121.22%
Vastus Lateralis	99.14%	100.07%	35.9%

R. B. R. Manero, et al. Wearable embroidered muscle activity sensing device for the human upper leg. EMBC 2016

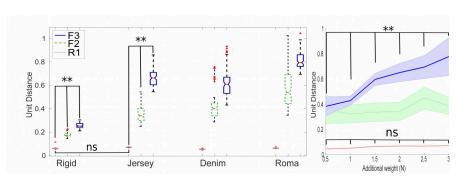
Why is this important?



Exploiting Fabric for Activity Recognition

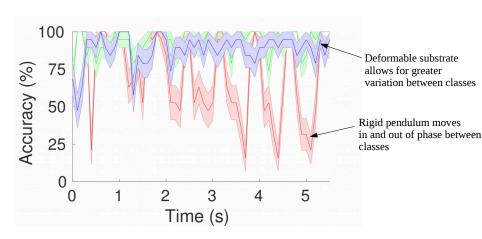

Example

Effect on Sensed Motion Signal



Significant difference (p<0.01)

B. Michael & MH. Activity recognition with wearable sensors on loose clothing. PLoS One, 12(10), 2017


Effect on Classification Algoritms

& MH. Activity recognition with wearable sensors on loose clothing. PLoS One, 12(10), 2017

Activity Recognition

B. Michael & MH. Activity recognition with wearable sensors on loose clothing. PLoS One, 12(10), 2017

Summary

Textiles represent an opportunity to measure human movement in a natural and non-invasive way.

 \rightarrow Many new opportunities, especially in affordable healthcare.

However, textile behaviour requires a rethink of how we tackle classic modelling problems.

ightarrow Can't just throw data at a machine learning algorithm!

Wearables to find useful (as opposed to most accurate) information.

 \rightarrow Tight-fitting clothing is not always beneficial!

ZING'S College LONDON